Pairs of Frequency-based Nonhomogeneous Dual Wavelet Frames in the Distribution Space

نویسنده

  • BIN HAN
چکیده

In this paper, we study nonhomogeneous wavelet systems which have close relations to the fast wavelet transform and homogeneous wavelet systems. We introduce and characterize a pair of frequency-based nonhomogeneous dual wavelet frames in the distribution space; the proposed notion enables us to completely separate the perfect reconstruction property of a wavelet system from its stability property in function spaces. The results in this paper lead to a natural explanation for the oblique extension principle, which has been widely used to construct dual wavelet frames from refinable functions, without any a priori condition on the generating wavelet functions and refinable functions. A nonhomogeneous wavelet system, which is not necessarily derived from refinable functions via a multiresolution analysis, not only has a natural multiresolution-like structure that is closely linked to the fast wavelet transform, but also plays a basic role in understanding many aspects of wavelet theory. To illustrate the flexibility and generality of the approach in this paper, we further extend our results to nonstationary wavelets with real dilation factors and to nonstationary wavelet filter banks having the perfect reconstruction property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pairs of Dual Periodic Frames Ole Christensen and Say

Abstract. The time-frequency analysis of a signal is often performed via a series expansion arising from well-localized building blocks. Typically, the building blocks are based on frames having either Gabor or wavelet structure. In order to calculate the coefficients in the series expansion, a dual frame is needed. The purpose of the present paper is to provide constructions of dual pairs of f...

متن کامل

A New Wavelet Based Spatio-temporal Method for Magnification of Subtle Motions in Video

Video magnification is a computational procedure to reveal subtle variations during video frames that are invisible to the naked eye. A new spatio-temporal method which makes use of connectivity based mapping of the wavelet sub-bands is introduced here for exaggerating of small motions during video frames. In this method, firstly the wavelet transformed frames are mapped to connectivity space a...

متن کامل

Effect of the frequency content of earthquake excitation on damage detection in steel frames

In this study, the effect of earthquake frequency content and noise effects on damage detection has been investigated. For this purpose, the damage was defined as nonlinear behavior of beams and columns, and several ground motion records were scaled so that some elements yield under the applied excitation. Then the acceleration response data of each floor obtained using the nonlinear dynamic an...

متن کامل

Evaluation of Damage Distribution in Elements of Dual Frames

Researches show that the strength criterion is inadequate for design of structures against seismic loads. Since structures yield and experience plastic deformation under strong ground motion, considering structural damage with inelastic behavior may be a considerable criterion for design and control of the structures.In this paper, three steel structures with dual system consisting of intermedi...

متن کامل

From Dual Pairs of Gabor Frames to Dual Pairs of Wavelet Frames and vice Versa Ole Christensen and Say

We discuss an elementary procedure that allows us to construct dual pairs of wavelet frames based on certain dual pairs of Gabor frames and vice versa. The construction preserves tightness of the involved frames. Starting with Gabor frames generated by characteristic functions the construction leads to a class of tight wavelet frames that include the Shannon (orthonormal) wavelet, and applying ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009